Step of Proof: fseg_select
11,40
postcript
pdf
Inference at
*
2
I
of proof for Lemma
fseg
select
:
1.
T
: Type
2.
l1
:
T
List
3.
l2
:
T
List
4. (||
l1
||
||
l2
||) c
(
i
:
. (
i
< ||
l1
||)
(
l1
[
i
] =
l2
[((||
l2
|| - ||
l1
||)+
i
)]))
fseg(
T
;
l1
;
l2
)
latex
by ((D (-1))
CollapseTHEN (Unfold `fseg` ( 0)
))
latex
C
1
:
C1:
4. ||
l1
||
||
l2
||
C1:
5.
i
:
. (
i
< ||
l1
||)
(
l1
[
i
] =
l2
[((||
l2
|| - ||
l1
||)+
i
)])
C1:
L
:
T
List. (
l2
= (
L
@
l1
))
C
.
Definitions
A
c
B
,
x
:
A
B
(
x
)
,
fseg(
T
;
L1
;
L2
)
origin